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Abstract

This study investigates the dynamic behavior of multiply-folded composite laminates analyzed the high order plate

theory. Using the third order finite element program developed for this study, the effects of folding angles and ply

orientations on the transient responses for various loading and boundary conditions are studied. The numerical results

obtained are in good agreement with those reported by other investigators. Furthermore, the new results reported in

this paper show the interactions between folding angels and layup sequences. Key observation points are discussed and

a brief design guideline is given.
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1. Introduction

The abundance of folded plate members offers a broad range of structural engineering applications such

as culverts, ship hulls, buildings, and box girder bridges. With the advancement of technology in fiber-
reinforced composite materials, the applicability of composites to such members has been increased sig-

nificantly due to their merits such as low density, high stiffnesses and high strengths.

Structural behavior of folded isotropic plates has been studied previously by a host of investigators using

a variety of approaches. Goldberg and Leve (1957) developed a method based on elasticity, which was

subsequently modified and applied by De Fries-Skene and Scordelis (1964). The methods in this category

are common because of their superb computational accuracy. However, it is difficult to apply these methods

directly to folded plates or to dynamic problems, so that they have been extended by other investigators to

deal with those problems. For example, Scordelis (1966) and Chu and Dudnik (1969) analyzed simply
supported box bridges using a similar technique. Cheung (1969) introduced the finite strip method for
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analyzing folded prismatic plates and box girders. Liu and Huang (1992) solved the problems for one- and

two-folded plates using a finite element transfer matrix method. Zienkiewicz and Taylor (2000) presented a

flat shell technique which can be applied directly to folded plates. Dynamic problems are also tackled by

many investigators. For example, Irie et al. (1984) calculated the natural frequencies of folded cantilever
plates using the Ritz method. Danial et al. (1996) introduced a concept referred to as spectral element

method. Lee et al. (2002) analyzed the dynamic response of a prestressed concrete box girder bridge

subjected to moving loads using folded plate elements.

All these works are limited, in that they can analyze only the structural members made of isotropic

materials. Recently, techniques for analyzing anisotropic plates are evolved. Suresh and Malhotra (1998)

studied the free vibration of damped composite box beams using four node plate elements with five degrees

of freedom (DOF) per node. Niyogi et al. (1999) carried out a finite element vibration analysis of folded

laminates using a first order plate theory, often referred to as the FOPT. In general, a first order shear
deformation theory can describe easily and accurately the kinematic behavior of a flat composite plate

(Reddy, 1997). However, it requires an estimation of shear correction factors; a value of K ¼ 5=6 is nor-

mally used (Khdeir and Reddy, 1991). On the other hand, the third order shear deformation theory (TSDT)

is free from such requirements and thus can yield more accurate results for both static and dynamic

conditions than those of the first order theories. This allows for convenient use of high order plate theory

(HOPT). Many high order theories exist but they are mostly applicable to unfolded (flat) isotropic or

anisotropic plates at the present time (Krishna, 1977; Bhimaraddi and Stevens, 1984; Reddy and Phan,

1985; Murthy, 1981; Kant et al., 1990).
Lee and Wooh (2003) extended the theory to study free vibration of composite box beams using the

FEM, in which they demonstrated the criticality of the HOPT in analyzing folded structures. For a folded

composite laminate, the folding angles and layup sequences could play a dominant role in determining the

dynamic characteristics. Thus, the study is further extended in this investigation to take into account the

effects of folding angles and stacking sequences. The focus is on forced vibration and different boundary

conditions. To obtain the results coupled with complicated nonlinear behavior, this study uses the HOPT.
2. Theoretical formulation

The HOPT used to analyze unfolded laminates reviewed in this study is derived from the third-

order laminate formulation (Reddy, 1997). The theory is based on the same assumptions as those of the

classical and FOPTs, except that we no longer assume that the straight lines normal to the middle surface

remain straight after deformation but it is assumed that they can be expressed in the form of a cubic

equation.

2.1. Finite element formulation for HOPT

For completeness, the shear deformation theory and the relevant formulas in the finite element analysis

of flat plates are reviewed below. A nonconforming element for unfolded plates have 7-DOF per node, that

is, the mid-plane displacements in the x-, y-, and z-directions (u0, v0, w0), the respective derivatives (w0;x,

w0;y), and the rotations (/x, /y). The generalized displacements can be approximated over an element Xe by

the expressions
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where [I2] is a 2 · 2 identity matrix, Wj are the Lagrange interpolation functions and Uj, Uj;x and Uj;y are the

Hermite interpolation functions, and their first derivatives, respectively. For the third plate theory, the

following relationship is valid:
uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ z/xðx; y; tÞ � c1z3 /xð þ c0w0;xÞ;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ z/yðx; y; tÞ � c1z3 /y

�
þ c0w0;y

�
;

wðx; y; z; tÞ ¼ w0ðx; y; z; tÞ;

ð2Þ
where c0 and c1 are the parameters referred to as tracers. The condition c0 ¼ 1, /x ¼ �w0;x and /y ¼ �w0;y

in Eq. (2) yields the same displacement field as that of the classical lamination theory (CLT). The dis-

placement field becomes identical to that of FOPT for c1 ¼ 0. Note that c0 ¼ 1 for HOPT which is our case.

2.2. Plate element stiffness matrix

The stiffness matrix [Ke] of a plate element is assumed to be
½K�e ¼
Z a

0

Z b

0

½B�T½D�½B�dxdy; ð3Þ
where a and b are the dimensions of a rectangular plate, [B] is the strain–displacement matrix, and [D] is a
stiffness matrix in the global coordinates. Alternatively, Eq. (3) can be rewritten in the natural coordinates

(n, g) as
½K�r ¼
Z 1

�1

Z 1

�1

½B�T½D�½B�jJ jdndg; ð4Þ
where jJ j is the determinant of Jacobian matrix. The 13 · 28 strain–displacement matrix [B] in the (n, g)
coordinates is given by
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and the 13 · 13 stiffness matrix [D] could be expressed as
½D� ¼

A11 A12 A16 B11 B12 B16 E11 E12 E16 0 0 0 0
A12 A22 A26 B12 B22 B26 E12 E22 E26 0 0 0 0
A16 A26 A66 B16 B26 B66 E16 E26 E66 0 0 0 0
B11 B12 B16 D11 D12 D16 F11 F12 F16 0 0 0 0
B12 B22 B26 D12 D22 D26 F12 F22 F26 0 0 0 0
B16 B26 B66 D16 D26 D66 F16 F26 F66 0 0 0 0
E11 E12 E16 F11 F12 F16 H11 H12 H16 0 0 0 0
E12 E22 E26 F12 F22 F26 H12 H22 H26 0 0 0 0
E16 E26 E66 F16 F26 F66 H16 H26 H66 0 0 0 0
0 0 0 0 0 0 0 0 0 A44 A45 D44 D45

0 0 0 0 0 0 0 0 0 A45 A55 D45 D55

0 0 0 0 0 0 0 0 0 D44 D45 F44 F45
0 0 0 0 0 0 0 0 0 D45 D55 F45 F55

2
66666666666666666664

3
77777777777777777775

; ð6Þ
where
ðAij;Bij;Dij;Eij; Fij;HijÞ ¼
Xn

k¼1
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ij ð1; z; z2; z3; z4; z6Þdz; i; j ¼ 1; 2; 6; ð7Þ
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zk

Q
ðkÞ
ij ð1; z2; z6Þdz; i; j ¼ 4; 5: ð8Þ
Here, Q
ðkÞ
ij denotes the stiffnesses of the kth layer and the positions of the top and bottom faces of the kth

layer zkþ1 and zk.

2.3. Plate element mass matrix

The equations of motion for the laminated composite plate based on the third order theory can be

written as follows:
Nxx;x þ Nxy;y ¼ I0€u0 þ J1€/x � c1I3€w0;x;

Nxy;x þ Nyy;y ¼ I0€v0 þ J1€/y � c1I3€w0;y ;

Qx;x þ Qy;y þ c1ðPxx;xx þ 2Pxy;xy þ Pyy;yyÞ þ F

¼ I0€w0 � c21I6ð€w0;xx þ €w0;yyÞ þ c1 I3ð€u0;x
h

þ €v0;yÞ þ J4ð€/x;x þ €/y;yÞ
i
;

Mxx;x þMxy;y � Qx ¼ J1€u0 þ K2
€/x � c1J4€w0;x;

Mxy;x þMyy;y � Qy ¼ J1€v0 þ K2
€/y � c1J4€w0;y ;

ð9Þ
where Nxx, Nyy , and Nxy are the normal and shear force resultants, Mxx, Myy , and Mxy are the moment
resultants, Qx and Qy are the transverse force resultants, F is the distributed load, and
Mab ¼ Mab � c1Pab; Qa ¼ Qa � c2Ra; ð10Þ

Ii ¼
Xm
k¼1

Z zkþ1

zk

qðkÞzi dz ði ¼ 0; 1; 2; . . . ; 6Þ; ð11Þ

Ji ¼ Ii � c1Iiþ2; K2 ¼ I2 � 2c1I4 þ c21I6; c1 ¼
4

3h2
; c2 ¼ 3c1; ð12Þ
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where m is the total number of layers, qðkÞ is the mass density of the kth layer, h is the wall thickness, and

(Pxx; Pyy ; Pxy) and (Rx;Ry) denote the higher order resultants respectively given as
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Eq. (9) can be rewritten in compact form as
fSg ¼ ½l�fAg; ð14Þ
where {S}, [l], and {A} are respectively the force vector, inertia matrix, and the acceleration vector. The

mass matrix of the unfolded flat element is given by the relationship
½M �e ¼
Z a

0

Z b

0

½H �T½l�½H �dxdy ¼
Z 1

�1

Z 1

�1

½H �T½l�½H �jJ jdndg; ð15Þ
where [H ] is a matrix consisting of Lagrange and Hermite interpolation functions.
2.4. Folded plate elements

It is known that a global stiffness matrix is singular and ill-conditioned because of the null diagonal
terms due to the drilling DOF /z in the transformed element stiffness matrix. As a result, it is not possible to

obtain directly the shape function of the drilling DOF induced by transformation. To resolve this problem

in a finite element analysis, we could insert an artificial in-plane rotational angle or equivalently rotational

stiffness coefficients. In our analysis, we add an eighth drilling DOF to the existing 7-DOF system, as

suggested by Lee et al. (2002) and Lee and Wooh (2003). The deformation of each element expressed in the

local coordinates can be transformed into the loading coordinates using the following transformation

relationship (see Fig. 1):
Fig. 1. Coordinate transformation of a folded plate element.
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or in brief,
fug ¼ ½T �fu0g; ð17Þ
where fij are the direction cosines between the global and local coordinates and [T ] is the transformation

matrix. The primed notations are used to denote the properties in the local coordinates.

The global stiffness matrix is then expressed as
½K� ¼ ½T �T ½K�0s½T �; ð18Þ
where
½T � ¼

½T � 0 0 0
0 ½T � 0 0

0 0 ½T � 0

0 0 0 ½T �

0
BB@

1
CCA

32�32

; ½K�0s ¼
½K�I 0

0 ½K�II

� �
32�32

: ð19Þ
Note that ½K�I and ½K�II are the real and artificial matrices consisting of 28 · 28 and 4 · 4 elements,

respectively. Before applying the transformation, the 28 · 28 matrix is reconstructed into a 32 · 32 matrix in

order to accommodate the drilling DOF /z for each element. Transformation of the mass matrix is the

same as that of the stiffness matrix, that is,
½M � ¼ ½T �T½M �0S ½T �: ð20Þ
The global force vector is also expressed as
½F � ¼ ½T �ff ge: ð21Þ
Neglecting the damping effect, the governing equations for the free and forced vibration problems are

respectively stated as
½M �
�

� x2½K�
�
¼ f0g ð22Þ
and
½M �f €Ug þ ½K�fUg ¼ fF ðtÞg; ð23Þ
where { €U} and {U} are the acceleration and displacement vectors. The impact loading function F ðtÞ is

described by an ideal rectangular spike shape of width t0 and magnitude dp:
P ðtÞ ¼ dp for 0 < t < t0;
0 for t > t0:

�
ð24Þ
In order to understand the dynamic behavior of a system, we often need to know only a few low order
eigenvalues of the system. In this study, the subspace iteration method (Bathe, 1996) is adopted to extract

the eigenpairs representing the low order natural frequencies. This method selects a subspace whose
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dimensions, determined by the desired number of eigenvalues to be obtained, are the same as those of the

entire matrix. Then, the Jacobi iteration method is carried out on the selected matrix using the Ritz�s base
vector as an initial vector. This method has the advantages to effective memory management and com-

putational efficiency as compared to other methods which carry the entire matrix in the computation
(Bathe, 1996). In Eq. (23), the damping effects are neglected. Newmark�s implicit integration technique

which uses the equilibrium conditions at time t þ Dt is adopted for the transient analysis.
3. Numerical results

It was shown from our previous study (Lee and Wooh, 2003) that the results obtained by different

composite plate theories could be noticeably different even for flat plates, depending on the given boundary
conditions. In order to validate the procedure described in this paper, we compare our results with those

published by other investigators. The third order finite element formulation is confirmed by studying (1) the

dynamic response of an unfolded plate subjected to a uniformly distributed step loading and (2) free

vibration of a folded plate. Then, a two-folded E-glass/epoxy composite structure shown in Fig. 2 is

analyzed to study its transient responses to (3) a concentrated step loading and (4) concentrated rectangular

impulse loading. The detailed loading and edge boundary conditions as well as other numerical parameters

used in this study are tabulated in Table 1, and the mechanical and physical properties of the materials are

shown in Table 2. The observation points A, B, and C are the locations where the displacements (dynamic
response) are evaluated.
3.1. Case I: dynamic response of an unfolded plate subjected to a uniformly distributed step loading

In order to validate the FEM code developed for forced vibration analysis, the dynamic displacement at

the center of a symmetric cross-ply composite laminate made of Material II is computed and compared

with the FOPT results reported by Kant et al. (1990). The plate clamped at all four edges is loaded by a
Heaviside step function distributed uniformly over its upper surface, that is,
P ðtÞ ¼ dp for t > 0;
0 for t < 0;

�
ð25Þ
where the load magnitude dp ¼ 10 N/cm2. The center displacement computed at every 5 ls is displayed up
to 150 ls in Fig. 3(a), showing negligible difference between the HOPT and FOPT results. On the other
Fig. 2. Dimensions and boundary conditions of a two-folded E-glass/epoxy composite plate analyzed by the HOPT.



Table 1

Numerical parameters used in the four different case studies to demonstrate the third order finite element formulas

Parameters Case I Case II Case III Case IV

Load distribution Uniformly distributed n/a Concentrated Concentrated

Load shape Heaviside step n/a Heaviside step Rectangular step

Folding angle Unfolded (0�) 90–150� 90–150� 120�
Layup sequences [0/90/0]n [45/)45/45]n, [0/90]ns,

[0/90]2n, [±30]ns

[0/90]s, [±h]ns [45/)45/45]n, [0/90]s,
[±45]2n, [±45]ns, [±h]ns

Material II I II II

End conditions All clamped Clamped–free Clamped–free,

clamped–clamped

Clamped–free

Measuring point A n/a A, C A, B, C

Table 2

Mechanical and physical properties of the materials used in this study

Material Source E1 E2 G12 G23 G13 m12 m21 q

I Niyogi et al. (1999) 60.70 24.80 12.0 12.0 12.0 0.23 0.23 1300

II Kant et al. (1990) 25E2 52.50 10.5 10.5 10.5 0.25 0.25 800

The units of E1, E2, G12, G23, G13 are GPa and that of q is kg/m3, respectively.
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Fig. 3. Case I. Computed dynamic response of a [0/90/0] composite plate subjected to a uniformly distributed step load for different

edge boundary conditions: (a) All edges are clamped. (b) One edge is clamped, all other edges are free. The displacement at the center

of the plate is computed for every 5 ls.
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hand, the results shown in Fig. 3(b) clearly indicate significant differences. In this case, only the boundary

conditions are changed; only one of the four edges is clamped and the other edges are set free.
3.2. Case II: free vibration of a folded plate

Lee and Wooh (2003) studied the free vibration behavior of a plate folded at 90� angles using the high

order theory. The analysis is extended in this study to take into account the plates with different folding

angles (e.g., a ¼ 120� and 150�), in which the full length L ¼ 2:0 m of the plate is divided into equal folding

lengths of L=3. The results are compared with those of Niyogi et al. (1999). They used 6 · 3 meshes of nine-
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node quadratic elements (FOPT), while a 12 · 6 mesh of nonconforming elements (HOPT) is used in this

study. Table 3 shows the three lowest natural frequencies for various layup sequences. It is observed that

the natural frequencies obtained by the HOPT are mostly higher than those of the FOPT. In particular, the

Mode 2 frequencies are different by 10–15%. Fig. 4 shows the free vibration mode shapes of a two-
folded symmetric cross-ply laminate with clamped ends. As shown in the figure, some peculiar and complex

mode shapes are produced due to the combined effect of both the folding angles and layup stacking

sequences.
Table 3

Natural frequencies of two-folded cantilever composite plate (Material I, L=h ¼ 50)

Folding

angle, a
Angle

orientation
Normalized frequency, x ¼ xL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

ð1�m2
12
Þ

E1

q

Niyogi et al. (FOPT) This study (HOPT)

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

90� [±30]ns 0.0901 0.0989 0.2035 0.0925 0.1128 0.2057

[0/90]ns 0.0896 0.0934 0.2044 0.1055 0.1156 0.1990

[0/90]2n 0.0987 0.0993 0.1992 0.0982 0.1068 0.2008

[45/)45/45]n 0.0914 0.1035 0.1988 0.0897 0.1102 0.2068

120� [±30]ns 0.0781 0.0931 0.2029 0.0736 0.1096 0.2017

[0/90]ns 0.0761 0.0893 0.2041 0.0821 0.1132 0.1976

[0/90]2n 0.0772 0.0987 0.1993 0.0807 0.1027 0.1992

[45/)45/45]n 0.0745 0.0993 0.1970 0.0758 0.1038 0.2040

150� [±30]ns 0.0551 0.0869 0.1703 0.0522 0.0948 0.1595

[0/90]ns 0.0533 0.0840 0.1628 0.0537 0.1016 0.1760

[0/90]2n 0.0522 0.0906 0.1670 0.0518 0.0923 0.1634

[45/)45/45]n 0.0519 0.0898 0.1620 0.0550 0.0929 0.1649

(a) (b)

(c) (d)

Fig. 4. Mode shapes of the lowest modes for a [0/90]s composite plate folded at (a ¼ 150�). (a) Mode I (L ¼ 20, L=h ¼ 50); (b) Mode II

(L ¼ 20, L=h ¼ 50); (c) Mode III (L ¼ 20, L=h ¼ 50) and (d) Mode IV (L ¼ 20, L=h ¼ 50).
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3.3. Case III: dynamic response of a folded plate subjected to concentrated step loading

Fig. 5 shows the dynamic displacements of a two-folded symmetric cross-ply composite plate with two

different boundary conditions (clamped–free and clamped–clamped boundaries) and the folding angles
(a ¼ 90�, 120�, and 150�). A concentrated step loading of magnitude dp ¼ 100 kN is applied at the center of

the plate (point A) at the time t ¼ 0 and the center displacement is computed at every 50 ls. For a plate with
clamped–free boundaries, the displacements for the 90� and 120� folding angles are close to each other (See

Fig. 5(a)). On the other hand, the induced displacement for the folding angle of 150� (which is at just the

same incremental angle of 30� from 120�) is extremely higher than the others. This phenomenon makes

sense to us because the flexural rigidity of the plate should decrease as the folding angle increases and it

behaves nonlinearly. The difference becomes more dramatic for the case of the clamped–clamped plate

shown in Fig. 5(b). We can also notice that the vibration frequency is significantly altered for the 150�
folding.

Fig. 6 shows the transient displacement histories measured at point A of various angle plies folded with

the fixed folding angle of 120�. The plate is subjected to a concentrated vertical step load applied at point A,

and the results for various layup sequences and boundary conditions are compared. For clamped–free

boundaries, the induced displacements show similar trends except that the displacement of [±60]s laminate

increases more rapidly in the early times (Fig. 6(a)). By contrast, the displacement amplitude of the [±60]s
laminate is significantly higher than the others for the clamped–clamped boundary condition (Fig. 6(b)).

Furthermore, there is a significant increase of vibration frequencies when the plate edges are clamped. This
observation provides us with a clue that it could be better to use small ply orientations in designing a folded

angle ply especially when the boundaries are clamped. Small ply angles result in better rigidity against

dynamic loading.

Fig. 7(a) shows the displacement history at point C of the same [0/90]s cross-ply laminate with clamped–

free boundaries. Notice the time delays by comparing with the waveforms shown in Fig. 5. This represents

the time required for the shock wave to travel the distance between the loading and detection points (points

A and C). Fig. 7(b) shows the influence of ply orientations on the dynamic behavior. As the ply angle

increases, the wave arrives at an earlier time and the frequency of the wave increases. This is also pre-
dictable because it is expected that a bigger ply orientation increases the stiffness in the axial direction, and

consequently the wave propagation speed increases in that direction. An increased wavespeed results in
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Fig. 5. Dynamic displacements of a two-folded [0/90]s laminates subjected to a step loading concentrated at point A. The clamped–free

(a) and clamped–clamped (b) boundary conditions and the folding angles of 90�, 120� and 150� are considered.
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Fig. 6. Transient displacements measured at point A of angle plies folded with 120� angles. The plate is subjected to a vertical step

loading concentrated at point A and the results for various layup sequences and boundary conditions are compared. (a) Clamped–free

boundaries, (b) clamped–clamped boundaries.

0 1 2 3 4 5

Time, t, (msec)

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

D
is

pl
ac

em
en

t,
w

,(
m

m
) Folding angle : 150

o
Folding angle : 120

o
Folding angle : 90

o

0 1 2 3 4                        5
Time, t,(msec)

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

D
is

pl
ac

em
en

t,
w

,(
m

m
)

Layer sequence : [60/-60]s

Layer sequence : [45/-45]s

Layer sequence : [30/-30]s

Layer sequence : [15/-15]s

(a) (b)

Fig. 7. Displacement history observed at point C of folded plates with clamped–free boundaries. The plate is subjected to a con-

centrated step load applied at point A. (a) Effect of folding angles for the [0/90]s laminate. (b) Effect of ply orientations for the 120�
folding angle.
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shorter arrival time and smaller wavelength. The largest displacement occurs for the laminate with the

smallest ply angle, [±15]s, because it has the lowest bending stiffness in the lateral direction.
3.4. Case IV: dynamic response of a folded plate subjected to a concentrated rectangular pulse loading

Fig. 8 shows the dynamic responses of a folded plate subjected to a rectangular pulse (or impact)

loading. A pulse of magnitude dp ¼ 100 kN is applied at the time t ¼ 0 for the duration of 50 ls. The wave
arrival times are significantly different for different layup sequences because of the same reason described
earlier. On the other hand, the differences in wavespeeds due to different folding angles are negligible,
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Fig. 8. Displacement history observed at point C of folded plates with clamped–free boundaries. The plate is subjected to a

concentrated impact load applied at point A. (a) Effect of ply orientations for the 120� folding angle. (b) Effect of folding angles for the

[0/90]s laminate.
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as shown in Fig. 8(b). The folding angle of the plate makes contributions only to the displacement mag-

nitude; the change in stiffnesses due to the folding angle is negligible so that the frequency is not greatly

changed.

Table 4 shows the dynamic magnification factors (DMF) at the points A, B and C on the impact-loaded

composite plate made of Material II. The DMF is defined as the ratio of displacement amplitudes of a point

between its static and dynamic states. Increasing the distance between the loading and observation points
raises the DMF. This is probably due to the fact that the point at far distance is under less influence by the

load and freely produces higher dynamic displacement. For the folding angle of 90�, the DMF of the [±45]

laminate at point A exhibits the lowest value. This stacking sequence provides the best resistance to
Table 4

Dynamic magnification factors at points A, B and C of a two-folded composite plate (Material II, L=h ¼ 50, clamped–free)

Folding angle, a Observation point Layup sequence

[±45] [±45]s [±45]2 [45/)45/45]s [45/)45/45]2

90� A 1.441 1.442 1.527 1.449 1.480

B 3.089 1.875 2.769 2.046 2.120

C 4.822 2.194 3.083 2.189 2.427

105� A 1.485 1.455 1.559 1.474 1.529

B 2.489 1.951 2.638 1.880 2.384

C 3.846 2.515 2.868 2.246 2.436

120� A 1.489 1.521 1.610 1.502 1.585

B 2.516 2.137 2.518 2.146 2.336

C 3.567 2.601 2.982 2.285 2.553

135� A 1.624 1.538 1.644 1.528 1.616

B 2.477 2.010 2.225 2.039 2.133

C 3.254 2.282 2.581 2.218 2.221

150� A 1.653 1.497 1.512 1.481 1.482

B 2.286 1.804 1.756 1.776 1.672

C 2.636 2.054 1.845 1.937 1.794
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dynamic loading in most conditions shown in the table. However, neither the stacking sequence nor the

folding angle provides conclusive correlation with the DMF.

We can observe that the resistance of symmetric cross-ply laminates to dynamic loading is superior to

that of the antisymmetric laminates. For the same number of layers, the DMF of antisymmetric laminates
is always higher (or inferior dynamic resistance) except for the points B and C with the folding angle of

150�; for example, compare [±45]s (symmetric) vs. [±45]2 (antisymmetric) or [45/)45/45]s vs. [45/)45/45]2. It
is easy to understand that the coupling stiffnesses Bij and Eij in Eq. (7), which become nonzero for anti-

symmetric laminates, make deleterious contributions to the dynamic behavior of the structural system.
4. Summary and conclusion

An intuitive prediction of the dynamic behavior of folded composite structures is difficult because of

their complexity due to the combined effect of anisotropy and folding geometry. In this study, the dynamic
characteristics are analyzed by considering various parameters. The advanced transient vibration analysis

based on the third order plate theory shows the significance of stacking sequences and loading conditions

for composite plates folded with arbitrary folding angles.

The parametric case studies reveal the importance of layup sequences and folding angles for efficient and

economic design. We find the following key observations in designing two-folded composite structures:

1. The dynamic characteristics of flat plates analyzed by HOPT and FOPT are significant different with

each other for different boundary conditions. It is especially true for clamped–free boundaries. The
boundary conditions make greater contributions on the responses of folded plates for higher ply angles.

In specific, the [±60] angle-ply laminate is very sensitive to the boundaries. Therefore, it is desirable to

use small fiber orientations (15–45�), especially for the folding angles of 90–120�.
2. As the ply angle increases, the wave travels faster and the frequency of the wave increases due to the

increased stiffness in the axial direction. On the other hand, the differences in wavespeeds due to different

folding angles are negligible, because the folding angle of the plate makes contributions only to the dis-

placement magnitude.

3. Due to the effect of the coupling stiffnesses Bij and Eij, the resistance of symmetric cross-ply laminates to
dynamic loading is superior to that of the antisymmetric laminates.

4. We find that the usage of 150� folding angle should be avoided for almost all conditions because of its

undesirable dynamic response.

The results of this study may serve as a benchmark for future guidelines in designing folded composite

structures. But our parametric study is only an example and more studies should be carried out for indi-

vidual design cases.
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